Transfer-Free Synthesis of Atomically Precise Graphene Nanoribbons on Insulating Substrates

نویسندگان

چکیده

The rational bottom-up synthesis of graphene nanoribbons (GNRs) provides atomically precise control widths and edges that give rise to a wide range electronic properties promising for devices such as field-effect transistors (FETs). Since the commonly takes place on catalytic metallic surfaces, integration GNRs into requires their transfer onto insulating substrates, which remains one bottlenecks in development GNR-based electronics. Herein, we report method transfer-free placement insulators. This involves growing gold film deposited an layer followed by gentle wet etching gold, leaves settle underlying substrate. Scanning tunneling microscopy Raman spectroscopy confirm high density uniformly grow films SiO2/Si substrates remain structurally intact after process. We have also demonstrated fabrication ultrashort channel GNR FETs using this A very important aspect present work is can scale up well 12 in. wafers, extremely difficult previous techniques. Our here thus represents step toward large-scale devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Raman Fingerprints of Atomically Precise Graphene Nanoribbons

Bottom-up approaches allow the production of ultranarrow and atomically precise graphene nanoribbons (GNRs) with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab initio simulations, we show that GNR width, edge geometry, and functional groups all influence their Raman spectra. The low-energy spectral region below 1000 cm(-1) is p...

متن کامل

Spatially Resolved Electronic Structures of Atomically Precise Armchair Graphene Nanoribbons

Graphene has attracted much interest in both academia and industry. The challenge of making it semiconducting is crucial for applications in electronic devices. A promising approach is to reduce its physical size down to the nanometer scale. Here, we present the surface-assisted bottom-up fabrication of atomically precise armchair graphene nanoribbons (AGNRs) with predefined widths, namely 7-, ...

متن کامل

Substrate-Independent Growth of Atomically Precise Chiral Graphene Nanoribbons

Contributing to the need for new graphene nanoribbon (GNR) structures that can be synthesized with atomic precision, we have designed a reactant that renders chiral (3,1)-GNRs after a multistep reaction including Ullmann coupling and cyclodehydrogenation. The nanoribbon synthesis has been successfully proven on different coinage metals, and the formation process, together with the fingerprints ...

متن کامل

A fast transfer-free synthesis of high-quality monolayer graphene on insulating substrates by a simple rapid thermal treatment.

The transfer-free synthesis of high-quality, large-area graphene on a given dielectric substrate, which is highly desirable for device applications, remains a significant challenge. In this paper, we report on a simple rapid thermal treatment (RTT) method for the fast and direct growth of high-quality, large-scale monolayer graphene on a SiO2/Si substrate from solid carbon sources. The stack st...

متن کامل

Interplay of relativistic and nonrelativistic transport in atomically precise segmented graphene nanoribbons

Graphene's isolation launched explorations of fundamental relativistic physics originating from the planar honeycomb lattice arrangement of the carbon atoms, and of potential technological applications in nanoscale electronics. Bottom-up fabricated atomically-precise segmented graphene nanoribbons, SGNRs, open avenues for studies of electrical transport, coherence, and interference effects in m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACS Nano

سال: 2021

ISSN: ['1936-0851', '1936-086X']

DOI: https://doi.org/10.1021/acsnano.0c07591